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The Soil Management Assessment Framework:
A Quantitative Soil Quality Evaluation Method

Susan S. Andrews,* Douglas L. Karlen, and Cynthia A. Cambardella

ABSTRACT bold et al., 1998). Because improper management can
lead to deleterious changes in soil function, a need forErosion rates and annual soil loss tolerance (T) values in evalua-
tools and methods to assess and monitor SQ was recog-tions of soil management practices have served as focal points for soil

quality (SQ) research and assessment programs for decades. Our ob- nized (e.g., Doran and Jones, 1996).
jective is to enhance and extend current soil assessment efforts by Although some misconceptions exist, the recent em-
presenting a framework for assessing the impact of soil management phasis on soil function (and dynamic soil quality) is not
practices on soil function. The tool consists of three steps: indicator se- intended to detract from the importance of soil taxon-
lection, indicator interpretation, and integration into an index. The omy, where inherent soil properties, resulting from the
tool’s framework design allows researchers to continually update and five soil forming factors (Jenny, 1941), and land use suit-
refine the interpretations for many soils, climates, and land use prac-

ability are emphasized. Soil quality uses taxonomy as atices. The tool was demonstrated using data from case studies in Geor-
foundation (Karlen et al., 2003). The specific definitiongia, Iowa, California, and the Pacific Northwest (WA, ID, OR). Using
of soil quality for a particular soil is dependent on itsan expert system of decision rules as an indicator selection step suc-
inherent capabilities, the intended land use, and the man-cessfully identified indicators for the minimum data set (MDS) in the

case study data sets. In the indicator interpretation step, observed in- agement goals. For instance, optimum levels of organic
dicator data were transformed into unitless scores based on site-spe- matter (and other soil properties) will differ depending
cific algorithmic relationships to soil function. The scored data resulted on the condition under which the soils formed, leading
in scientifically defensible and statistically different treatment means to variation in potential functioning. The use-dependence
in the four case studies. The efficacy of the indicator interpretation step of the SQ concept can be illustrated simply: the func-
was evaluated with stepwise regressions using scored and observed in- tions, properties, and processes necessary to hold up a
dicators as independent variables and endpoint data as iterative de-

physical structure are not the same as those needed topendent variables. Scored indicators usually had coefficients of deter-
grow a crop. More subtly, the soil qualities (functions ormination (R2) that were similar or greater than those of the observed
properties) critical for environmentally benign land ap-indicator values. In some cases, the R2 values for indicators and end-
plication of animal waste are not identical to those forpoint regressions were higher when examined for individual treat-

ments rather than the entire data set. This study demonstrates signifi- maximized production—even within the same field or
cant progress toward development of a SQ assessment framework for under the same crop.
adaptive soil resource management or monitoring that is transferable As with defining SQ, assessing SQ also requires con-
to a variety of climates, soil types, and soil management systems. sideration of taxonomy, land use and management goals.

Appropriate SQ assessment measures a soil’s changes
in function in response to management, within the con-

High rates of soil erosion, losses of organic matter, text of what the soil is being asked to do, its inherent prop-
reductions in fertility and productivity, chemical erties, and environmental influences, such a temperature

and heavy metal contamination, and degradation of air and precipitation. The target or optimum soil quality is
and water quality have sparked interest in the concept of not one standard for the USA or the world; instead, it
soil quality (SQ) and its assessment (Larson and Pierce, is a series of thresholds defined by limiting factors and
1991; National Research Council, 1993; Doran and Par- user needs.
kin, 1994; Karlen et al., 2001). Although it has a variety Indicators of SQ can be defined loosely as those soil
of (sometimes conflicting) definitions in the current lit- properties and processes that have greatest sensitivity
erature, SQ is most often defined as “the capacity of the to changes in soil function. Doran and Parkin (1996)
soil to function” (Karlen et al., 1997). Some important emphasized that SQ indicators should correlate well with
soil functions (or ecosystem services) include: water flow ecosystem processes, integrate soil properties and pro-
and retention, solute transport and retention, physical cesses, be accessible to many users, sensitive to manage-
stability and support; retention and cycling of nutrients; ment and climate, and, whenever possible, be components
buffering and filtering of potentially toxic materials; and of existing databases. Indicator groups or MDSs, used
maintenance of biodiversity and habitat (Daily et al., to indirectly measure soil function, must be sufficiently
1997). The term dynamic SQ refers to the effects of hu- diverse to represent the chemical, biological, and physi-
man use and management on these soil functions (Sey- cal properties and processes of complex systems (Gre-

gorich et al., 1994; Doran and Parkin, 1996; Snakin et al.,
S.S. Andrews, USDA-NRCS, Soil Quality Institute, 2150 Pammel Dr.,
Ames, IA 50011-4420; D.L. Karlen and C.A. Cambardella, USDA-
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1996; Karlen et al., 2003). While the concept of indirect
measures (indicators) has been widely used to monitor
water quality (Karr, 1981), the idea was first applied to
soil function through pedotransfer functions (Larson
and Pierce, 1991). Because there are so many competing
uses and inherent limitations for the world’s soils, the
components of a MDS are not universal: the appropriate
indicators for indirect assessment of soil function are
determined by which functions are critical to meet man-
agement goals (Harris et al., 1996; Andrews et al., 2002a).

Larson and Pierce (1991) argued that the measure of
SQ in agriculture should no longer be limited to pro-

Fig. 1. Conceptual framework for the soil management assessmentductivity goals, inferring that emphasizing productivity
tool (after Andrews, 1998).may have contributed to soil degradation in the past.

The design of any generalized assessment tool for SQ
the second and third steps is available on request from themust be flexible enough to capture multiple soil func-
authors. It is not within the scope of this paper to describe thetions in various combinations. This must be accomplished
computer code in detail but we do describe the driving logicwith respect to the broader goals of sustaining plant and statements and algorithms used.

animal productivity, maintaining or enhancing water and
air quality, and supporting human health and habitation

Indicator Selection(Karlen et al., 1997). In addition, a SQ assessment tool
needs to interpret the indicators of those functions in The SMAF uses a series of decision rules (Bellocchi et al.,

2002; Schadt et al., 2002), in a database format, to generateterms of the inherent abilities of the soil and climate in
a list of suggested MDS indicators from the more than 80which the assessment takes place. Such a tool would ad-
integrative measurements related to ecosystem processes anddress most of the misgivings and misconceptions among
function currently residing in the database. The decision rulesthose who have reservations regarding the SQ concept
use the management goals for the site, associated soil func-(e.g., Sojka et al., 2003), by using quantitative laboratory tions, as well as other site-specific factors, like region or crop

analyses, providing site-specific interpretations, and eval- sensitivity, as selection criteria. These rules tables serve as an
uating and understanding management effects on a spe- expert system to select appropriate SQ indicators (Andrews
cific soil resource with respect to multiple endpoints et al., 2002a).
(which are outcomes driven by management or societal To generate a list of suggested indicators, a user of the tool

replies to a number of questions, one of which pertains to thegoals, e.g., productivity and environmental quality).
user’s primary management goal for the site. A table in theThe objectives for this current work were (i) to design
database identifies the critical functions associated with eacha tool to assess the relative effects of management on
management goal: maximize productivity, waste recycling, orSQ based on indicator measurement, and (ii) to test the
environmental protection (Table 1). For example, if the userframework for transferability across soils, climate, and
chooses waste recycling as the primary management goal, themanagement practices. program identifies the functions nutrient cycling, water rela-

This paper outlines a three-step framework (without tions, filtering and buffering, and resistance and resilience as
describing details of the computer code), called the Soil important to that goal. There are currently three management
Management Assessment Framework (SMAF), and im- goals and six functions identified in the program’s database but
parts the results of its application to four case studies more can easily be added if additional land uses are targeted.

In a second database table, a list of indicators is associatedthat vary in climate, management practice, spatial extent,
with each identified soil function. The list is further narrowedand soil type. The case study demonstration shows how
using several additional criteria: climate, crop or rotation, till-the framework interprets soil indicator data and com-
age practice(s), assessment purpose, and inherent soil proper-putes relative SQ indices to compare management prac-
ties (such as organic matter class, texture, slope, degree of wea-tices or monitor change over time. We call on other re-
thering, or pH). Each indicator has a unique combination ofsearchers to continue to test, critique, and refine the goals, functions, and additional criteria that must be satisfied

SMAF as a tool for sustainable soil management. for it to be suggested as a MDS indicator. Table 2 shows a sub-
set of potential indicators for the soil functions and associated
management goals. The entire database includes 81 indicatorsMATERIALS AND METHODS
and 169 selection rules, which are combinations of functions

Soil Management Assessment Framework Design and other criteria for selection, making an average of approxi-
mately two selection scenarios per indicator. The database struc-The SMAF is designed to follow three basic steps: indicator
ture of the decision rules program for Step 1 allows for easy up-selection, indicator interpretation, and integration into a SQ
dates and refinements: goals, functions, indicators, selectionindex value (Andrews, 1998) (Fig. 1). An object-oriented Java
rules, and their associations can all be altered, added or deletedversion of the SMAF is currently under development. An
via changes to the database, updating selection rules withoutExcel1 (Microsoft Inc., Redmond, WA) spreadsheet containing
altering the program itself.

The resulting suggested indicator list is grouped according1Mention of a trademark, proprietary product, or vendor does not
to critical soil function. The user is asked to select four to eightconstitute a guarantee or warranty of the product by the USDA and
indicators with at least one indicator from each function. Todoes not imply its approval to the exclusion of other products or

vendors that may also be suitable. maximize flexibility and accessibility, the user has final say as
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Table 1. Potential management goals and associated soil functions used to select appropriate soil quality indicators.

Management goal Supporting soil function Reference for soil function

Productivity† nutrient cycling¶ Doran and Parkin (1994); Seybold et al. (1998)

Waste recycling‡ water relations# Harris et al. (1996); Seybold et al. (1998)

Environmental protection§
physical stability and support†† Daily et al. (1997); Doran and Parkin (1994); Harris et al.

(1996); Seybold et al. (1998)
filtering and buffering‡‡ Daily et al. (1997); Harris et al. (1996); Seybold et al. (1998)

resistance and resilience§§ Doran and Parkin (1994); Karlen et al. (1994)

biodiversity and habitat¶¶ Doran and Parkin (1994); Karlen et al. (1994); Seybold et al.
(1998)

† The Productivity Goal is defined as enhancing or maintaining the production quantity, quality, and stability of economically important plants as a pri-
mary management concern.

‡ The Animal Waste Recycling Goal involves the reuse of animal (or other) waste to eliminate it from the waste stream, while providing fertilizer and
other added values in an environmentally sound manner as a primary management concern.

§ The Environmental Protection Goal is defined as the use of efficient practices that enhance or maintain the quality of the soil, air and water on-farm
and in the surrounding ecosystem as a primary management concern.

¶ Nutrient cycling–Soils that are functioning well have a high potential to provide optimal amounts of essential plant available nutrients and tie up excess
nutrients that may be toxic to plants or harmful if released to air or water.

# Water and solute flow–Water movement is important to provide water within a plant’s root zone and to allow for the movement of nutrients and
beneficial soil organisms in solution. Partitioning and storage of water and solutions can maximize deep percolation for ground water recharge and help
soils withstand erosive forces.

†† Physical Stability and structural support–Soils that function well have a physical structure that provides a medium for plant root growth and withstands
the erosive forces of wind and water. Soil structure is closely related to and often necessary for many other functions.

‡‡ Filtering and Buffering–Soils have a natural capacity to degrade or reduce toxic or hazardous compounds. When functioning properly, soils can make
moderate amounts of certain contaminants less toxic to plants and animals, often by degrading the compound or adsorbing it onto a particle surface.

§§ Resistance and resilience–These two related terms refer to the functional stability of the soil ecosystem; that is, they are measures of the stability of
the other (listed) functions. Resistance is the ability of a soil to maintain function in the face of disturbance (i.e., to resist change). Resilience is the abil-
ity of a soil to bounce back after a disturbance. These disturbances can be human-induced (such as tillage or pesticide application) or natural (like a
large storm) (Herrick and Wander, 1998).

¶¶ Biodiversity and habitat–This function refers to the soils’ natural ability to provide the necessary conditions to support a variety of unstressed plants
and animals. It is agronomically important for integrated pest management, nutrient cycling, and ecotourism (health of the surrounding ecosystem).

to which indicators are selected for the MDS and can elect to reflecting the performance of ecosystem service(s) or soil func-
ignore the suggested list or use a different number of indicators tion(s). In the framework, each indicator measure is trans-
(i.e., greater than four or less than eight). At this time, although formed via the scoring algorithm into a unitless score (0 to 1)
all 80� indicators can be offered for the suggested list, only that represents the associated level of function in that system.
10 are available for use in the next step (because scoring al- An indicator score of 1 represents the highest potential func-
gorithms have yet to be fully developed). tion for that system, that is, the indicator is nonlimiting to

pertinent soil functions and processes, within the soil’s inher-
ent capability.Indicator Interpretation

We assume the general relationship between a given indica-
After selecting (Step 1) and measuring the appropriate indi- tor and the soil function(s) it represents holds relatively con-cators for the MDS, indicator interpretation (Step 2) involves stant among systems. This relationship dictates the shape of antransformation of each observed MDS indicator value using indicator’s scoring curve (or the algorithm’s equation). Somenonlinear scoring curves (e.g., Karlen and Stott, 1994; An-

general shapes include more-is-better (upper asymptotic sig-drews et al., 2002a, 2002b). It is assumed that indicator mea-
moid curve), less-is-better (lower asymptote), and mid-pointsures are performed according to standard methods for the
optima (Gaussian function) (Karlen and Stott, 1994; Andrewsnear surface (0–15 cm) and that sampling design is appropriate
and Carroll, 2001; Andrews et al., 2002a, 2002b). Current sci-for the area to be assessed (see the case study section for ex-
entific knowledge allows us to predict general shapes and theamples). Measured values are transformed into unitless values
flexibility of the framework will make refinements simple asso that scores may be combined to form a single value in Step
the knowledge base improves.3. The use of scoring curves for data analysis and synthesis

The nonlinear scoring algorithms were originally constructedallows interpretations to reflect both ecosystem function and
using a curve-fitting program, CurveExpert v. 1.3 sharewarefarmer and societal values regarding crop production and envi-
(available online at http://curveexpert.webhop.biz/ [verified 22ronmental protection (Schiller et al., 2001). For example, soci-
June 2004]). The curve shapes were determined by literatureety currently places a value on the protection of surface water,
review and consensus of collaborating researchers. Total or-therefore, the measurements for soil P that are above what
ganic C (TOC) and water stable aggregation (AGG) are as-is necessary for crop production receive lower scores, particu-
cending logistic or more-is-better functions based on theirlarly on sloping land, to reflect the increased risk of surface
roles in soil fertility, water partitioning, and structural stabilitywater contamination (Fig. 2). Scoring curves are used in a
(Tiessen et al., 1994; Herrick and Wander, 1998). Plant avail-similar manner in a variety of disciplines such as measurement
able water holding capacity (AWC) was assigned a more-of utility in economics (e.g., Norgaard, 1994), evaluation of
is-better curve, based on the role of water availability for cropdecision outcomes in multi-objective decision science (e.g.,
productivity and other biological activity (e.g., Gregory et al.,Yakowitz et al., 1993), and assessment and modeling in systems
2000). The more-is-better curve was also used for potentiallyengineering (e.g., Wymore, 1993).
mineralizable N (PMN) based on nutrient availability and aEach SMAF scoring curve consists of an algorithm or logic
theorized relationship between microbial activity and plantstatement (e.g., if, then, else) with alternative algorithms (Ta-
productivity (e.g., Hendrix et al., 1990; Sparling, 1997). Theble 3). The algorithms are quantitative relationships between

empirical values of measured indicators and normalized scores, more-is-better curve was also used for microbial biomass C
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Table 2. A subset of potential indicators for each function (with associated management goals in parentheses) including: the additional
selection criteria for that indicator; the case study for which each rules set applied (if any); and references for each indicator or
selection criteria (when available).

Soil function Indicator† Criteria for selection of indicator ‡ Case study Reference for use as SQ indicator§

Biodiversity and habitat MI large spatial area of interest NRI (as endpoint) Bongers (1990); Linden et al.
(environmental goal) (Neher et al., 1995) (1994); Blair et al. (1996)

qCO2 environmental management goal (not used) Gregorich et al. (1994); Sparling
or C change assessment (1997)

Filtering and buffering Db manure management goal GA Larson and Pierce (1991); Doran
(waste managment and Parkin (1994); Arshad et al.
and environmental (1996)
goals)

test P environmental goal or manure NRI Harris et al. (1996)
applied (Sharpley et al., 2003; GA
Sims, 1995)

TOC always suggested under this NRI Larson and Pierce (1991); Doran
function and Parkin (1994); Elliot et al.

(1994); Sikora and Stott (1996)

Nutrient cycling MBC C change assessment or NRI, IA Turco et al. (1994); Gregorich et
(all goals) alternative to PMN (Sparling, GA al. (1994); Rice et al. (1996)

1997)
PMN always suggested under this NRI, IA Doran and Parkin (1994),

function Needelman et al. (1999)
soil pH always suggested under this NRI, IA, Doran and Parkin (1994); Smith

function CA, GA and Doran (1996); Karlen et al.
(1996)

test P organic amendment comparison CA listed above
or southern region �
productivity goal

Physical stability AGG always suggested under this NRI, IA Harris et al. (1996); Arshad et al.
and support function (1996); Karlen et al. (1996)
(environment and
productivity goals)

Db clay texture � practice (not used) listed above
comparison

soil pH arid region NRI, CA listed above

Resistance and soil depth environmental or productivity (not used) Arshad et al. (1996); USDA-NRCS
resilience (all goals) management goal (2001); Grossman et al. (2001b)

TOC comparisons over time or C IA listed above
change assessment or organic NRI
amendment comparison CA, GA

Water relations AWC always suggested under this GA Larson and Pierce (1991); Lowery
(all goals) function et al. (1996)

Db tillage comparison IA listed above
EC arid regions or manure CA Smith and Doran (1996)

management goal
SAR selected in arid regions CA Andrews et al. (2002a, 2002b)
soil pH arid region or manure NRI, CA listed above

management or fertilizer GA
comparison � water quality

† MI, nematode maturity index (used as an endpoint measure instead of a MDS indicator, see text); qCO2, metabolic quotient (a proportion of soil
respiration and microbial biomass); Db, bulk density; test P, soil test P; TOC, total organic C; MBC, microbial biomass C; PMN, potentially
mineralizable nitrogen (aerobic incubation); AGG, macroaggregate stability; AWC, available water capacity; EC, electrical conductivity; SAR,
sodium absorption ratio.

‡ When the stated criteria are met under a given function, the corresponding indicator is suggested as a potential minimum data set component.
§ SQ, soil quality.

(MBC) based on its role as a pool of readily available C and vary according to site-specific controlling factors, such as cli-
mate or inherent soil properties. For instance, in a southeast-N and an association with improved soil structural functioning

(Elliott and Coleman, 1988; Hendrix et al., 1990). A lower ern U.S. Ultisol, a TOC of 2% would be considered a high
value; this soil would receive a high TOC score. In a Midwest-asymptotic or less-is-better function was used for bulk density

(Db) because of the inhibitory effect that high Db often has ern Mollisol, however, a TOC of 2% would be considered a
low value, consistent with a degraded soil. It would receive aon root growth and soil porosity (Grossman et al., 2001b).

Variations of mid-point optimum or Gaussian functions were correspondingly low score. The factors controlling these dif-
ferences in expected range for TOC include average annualused for soil pH (Whittaker et al., 1959; Smith and Doran,

1996) and electrical conductivity (EC) (Tanji, 1990) based on precipitation, average annual temperature, soil texture, and
soil taxonomic suborder (as a surrogate for inherent soil or-crop sensitivity and effects on nutrient availability. Scores for

sodium adsorption ratio (SAR) were dependent on potential ganic matter). To model these associations between indicators,
function, and controlling factors, one must have knowledgefor soil dispersion, environmental (water quality) risk, and as-

sociated EC levels (Oster and Schroer, 1979; Hansen and of (or make assumptions about) not only the appropriate curve
shape (based on the indicator’s relationship to ecosystem func-Grattan, 1992). The mid-point optimum curve for P is based

on crop response and environmental risk (Pierzynski et al., tion) but also the expected direction of change in curve inflec-
tions as major controlling factors change. For instance, as tem-1994; Maynard, 1997).

We assume that the expected range for each indicator will perature and precipitation increase, expected TOC decreases
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Fig. 2. Scoring functions for soil test P, showing differences based solely on slope: for sites with 0–2% slopes, for 4–8% slopes, and �16% slopes.
Other assumptions made to generate this example were: P was determined using Mehlich III, soils were planted to fescue, and inherent soil
characteristics include medium high organic matter (approximately 3.5–5% total organic C), silt or silt loam texture, and only slight weathering.
In this example, the inflection points for the ascending portion of the curve depend on primarily crop requirements while the descending
portion inflection points are largely dictated by slope.

due to increased decomposition rates under these conditions. hypothetical example of this phenomenon for the indicator soil
test P (test P). The left side of the P scoring curve (ascending toThis results in a shift to the left in the algorithm’s inflection

points. an upper-asymptote) is based primarily on crop requirements
(or crop class) and well supported in the literature (e.g., May-We used CurveExpert v. 1.3 shareware to identify which pa-

rameters in the scoring curve algorithms needed to change to nard, 1997). The right side (lower-asymptote) reflects environ-
mental risk (P runoff to surface water) and is based primarilybest represent the relationships between each indicator and

soil function(s) in various systems, for example, climate, soil, on slope. (Slope is grouped into five classes: 0–2, 2–4, 4–8, 8–16,
and �16%.) The right-side portion of the curve is currently lessand crop combinations. We also, by default, identified those

parameters in the algorithms that do not change, which are well defined in the literature. Both sides of the curve are
influenced by observed TOC (as a continuous function), soiltermed fixed parameters. We then determined, via literature re-

view, the most important controlling factors for each MDS texture class (as a step function), and method of soil P detec-
tion (acting as classes to form a step function) as well (Fig. 2indicator. We linked these controllers to the site-specific pa-

rameters, using database tables in Java and look-up tables in and Table 3).
Excel. For example, the controlling factors for the Db scoring-
algorithm are texture and mineralogy (Table 3). Using a logic Integration into an Index
statement, the program chooses between two sets of param-

Step 3 of the SMAF, index integration, is optional but offerseters for one algorithm based on soil texture. As texture be-
the potential to integrate all of the indicator scores from thecomes coarser, Parameters b, c, and d change to reflect a greater
previous interpretation step into a single, additive index value.tolerance of higher Db’s before root restriction or aeration be-
This value is considered to be an overall assessment of SQ,come a problem. In clayey soils, mineralogy comes into play,
reflecting management practice effects on soil function. An-such that glassy and smectitic soils have a lower tolerance of
drews et al. (2002a) found few differences among varioushigh Db’s compared with other mineral classes (Grossman
integration techniques including additive (e.g., Andrews andet al., 2001a). Table 3 shows the algorithms, fixed parameters,
Carroll, 2001), weighted (Harris et al., 1996); and max–minsite-specific parameters, and controlling factors for 10 scor-
objective functions (e.g., Yakowitz et al., 1993) when used toing curves.
combine nonlinearly scored indicator values. Therefore, weFor some of the site-specific parameters, there were too
chose the simplest alternative, the additive index, for the inte-many controlling factors to identify exact values for every pos-
gration step. This step is accomplished by summing the scoressible combination. To circumvent this problem, we grouped
for each indicator, dividing by the total number of indicators,some factors into classes that behave similarly. For instance,
and then multiplying by 10 (Eq. [1]):soil texture is grouped into five classes based on the work of

Quisenberry et al. (1993). Conversely, a few parameters are
modeled as continuous (rather than step) functions. For exam-

SQI � ��
n

i�1
Si

n � � 10 [1]ple, we used observed TOC as a site-specific factor in the test
P scoring algorithm. By identifying expected trends in function
due to controlling factors, this approach yields site-specific where S represents the scored indicator value and n is the
soil indicator interpretations without the need to construct number of indicators in the MDS.
formal thresholds for every possible combination of soil, cli- Using the number of indicators in the MDS as a divisor cor-
mate, and crop. rects for any missing data in the data set. The index value was

Using these algorithms and their fixed and site-specific pa- multiplied by 10 to provide index values in a range (1 to 10
rameters, we created scoring curves that shift to provide a site- rather than 0 to 1) found to be more amenable for producers

and other potential users (Andrews et al., 2003).specific interpretation for each indicator. Figure 2 illustrates a
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ANDREWS ET AL.: SOIL MANAGEMENT ASSESSMENT FRAMEWORK 1951

California Cooperative Extension Service. The Conv-2 rota-The Case Studies
tion consists of processing tomato (Lycopersicon esculentum

Site Descriptions and Experimental Designs Mill.) and wheat. The Conv-4 rotation was tomato, corn, saf-
flower (Carthamus tinctorius L.), and wheat and dry beansWe applied the SMAF to four large, existing data sets from
(Phaseolus vulgaris L.) (double cropped). The organic treat-studies conducted at different scales and regions within the
ment used composted and aged animal manures, rotations ofUSA. Site descriptions for each of the studies are presented
winter cover crops, and some organic supplements for fertilitybelow; metadata is summarized in Table 4.
and pest management. The low treatment combined both syn-The largest scale case study was a 1996 Natural Resources
thetic and organic techniques: synthetic fertilizer was appliedInventory (NRI) pilot project, for which SQ indicator data
at about one half the recommended rate and pesticide usewere collected from a representative subset of the NRI moni-
was reduced by cultivation and hand hoeing. The organic andtoring sites located in Major Land Resource Area 9. This area
low treatments had identical cash crop rotations of tomato,comprises the Palouse and Nez Perce Prairies and spans south-
safflower, corn, oats (Avena sativa L.) � vetch (Vicia spp.),eastern Washington, northwestern Idaho, and northeastern Ore-
and dry beans (double cropped) (Clark et al., 1998, 1999a,gon. The approximately 23 140-km2 region includes broad ranges
1999b; Andrews et al., 2002a). All possible entry points for thein elevation and average annual precipitation and temperature
rotations were represented each year. The soils were classified(Brejda et al., 2000a, 2000b). The agricultural land uses in the
as Reiff loams (coarse-loamy, mixed, nonacid, thermic Mollicregion consist of about 50% cropland, most of which is dry-
Xerofluvents) and Yolo silt loams (fine-silty, mixed, nonacid,farmed to wheat (Triticum aestivium L.), spring pea (Pisum
thermic Typic Xerorthents). We used the 1996 data set.sativum L.), and lentils (Lens culinaris L.), 40% rangeland,

The smallest scale case study was a plot-scale experimentand 10% permanent pasture or vegetable production (USDA-
in Georgia to compare the residual effects of fresh versus com-SCS, 1981). Soil samples were collected irrespective of soil se-
posted broiler litter on SQ in tall fescue (Festuca arundinacea)ries or land use using the NRI sampling design (Brejda et al.,
pasture, 3 yr after application (Andrews, 1998; Andrews and2000a, 2000b).
Carroll, 2001) in May 1995. Four experimental treatmentsFor the Iowa case study, we used data collected in 1994
(split application totals) consisted of surface-applied poultryand 1995 from two field-scale watersheds (WS) with a 25� yr
(broiler) litter applied at approximately 1845 kg N ha�1; sur-tillage system comparison at the Deep Loess Research Station
face-applied composted broiler litter at approximately 1845near Treynor, IA. One of the watershed treatments (WS2) was
kg N ha�1 (representing the high end of litter application ratescropped to continuous corn (Zea mays L.) on the contour from
in the region); surface-applied ammonium nitrate treatment1964 to 1995. The other watershed treatment (WS3) was used
providing 100 kg N ha�1, 13 kg P ha�1, and 33 kg K ha�1; andfor cattle grazing from 1964 to 1972, and then converted to con-
a no amendment control, applied in a randomized completetinuous corn production using ridge tillage in 1972 (Cambardella
block design (Tyson, 1994). The high litter amendment rateset al., 2004). Soils at summit positions are Monona silt loams
were representative of (the high end of) surface applications(fine-silty, mixed, superactive, mesic Typic Hapludolls). Ida or
for waste disposal in the region. The study was conducted atDow silt loam soils (fine-silty, mixed, calcareous, mesic Typic
two locations, with four blocks at each site: near Calhoun, GA,Udorthents) are found in backslope positions. Footslope soils
on a Conasauga silt loam (fine, mixed, semiactive, thermic,are generally Napier or Kennebec silt loams (fine-silty, mixed,
Oxyaquic Hapludalfs) in the Southern Appalachian Ridgessuperactive, mesic, Cumulic Hapludolls) (Karlen et al., 1999).
and Valleys region; and near Farmington, GA, on a Cecil sandyTwelve sampling locations were distributed within each WS
loam (fine, kaolinitic, thermic, Typic Kanhapludults) in thebased on soil series, slope, and erosion class. Locations were

consistent each year. Piedmont region.
A third study, the Sustainable Agriculture Farming Systems

project, involved 1.2-ha plots managed using different vege- Laboratory Analyses
table production systems near Davis, CA (Clark et al., 1998,

The SQ indicators were measured for bulked core samples1999a, 1999b) in a randomized split plot design. The four man-
taken from 0 to 10 cm (for NRI), 0 to 15 cm (at IA and CA),agement system treatments differed by crop rotation and use
and 0 to 5 cm (for GA) of soil at each case study location,of external inputs: conventional 2 yr (Conv-2), conventional
using standard methods. The NRI dataset included approxi-4 yr (Conv-4), low input, and organic. Both conventional treat-
mately 20 chemical, biological, and physical indicators (Brejdaments received applications of synthetic pesticides and ferti-

lizers at rates recommended for the region by University of et al., 2000a, 2000b). The Iowa study included 21 chemical,

Table 4. Selected metadata for the soil management assessment framework (SMAF) case studies: the 1996 Natural Resources Inventory
(NRI); Deep Loess Research Station, 1994–1995 (IA); Sustainable Agriculture Farming Systems project, 1996 (CA); two Experiment
Stations in northeast and northwest Georgia, 1995 (GA).

Case study

Property NRI IA CA GA

Location ID, WA, OR near Treynor, IA near Davis, CA Calhoun and Farmington, GA
Scale regional 30–60 ha watersheds 1.2 ha plot 2.5 m plot
Treatment multiple land uses conventional and vegetable production poultry litter amendment

minimum tillage system
Soil suborders primarily Xerolls, Albolls, Xeralfs Udolls, Orthents Fluvents, Orthents Udults, Udalfs
Data types chemical, biological, and physical chemical, biological, mostly chemical chemical, biological, and

and physical physical
Source NRI pilot† DLRS‡ SAFS§ Andrews¶
Management goal environmental protection productivity productivity manure (or waste) management

† Natural Resources Inventory pilot study (Brejda et al., 2000a, 2000b).
‡ Deep Loess Research Station (Cambardella et al., 2004).
§ Sustainable Agricultural Farming Systems project (Clark et al., 1998, 1999a, 1999b).
¶ Ph.D. dissertation (Andrews, 1998) and previous SQ assessment publication (Andrews and Carroll, 2001).
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biological, and physical indicators SQ indicators (Cambardella dance of nematode functional groups or feeding guilds. The
et al., 2004). The California dataset was comprised of 19, mostly maturity index met the selection criteria in the selection rules
soil chemical, SQ indicators (Clark et al. (1998).) The Georgia database (in Step 1) (Table 2) and thus was a potential MDS
study included 38 chemical, biological, and physical SQ indica- indicator for this case study. We chose to use it as a endpoint
tors (Andrews and Carroll, 2001). The indicators with methods measure instead, in part because there were few endpoints
described below are included in at least one case study MDS. available for this dataset but also because: (i) increased bio-

Aggregate stability was assessed according to methods de- diversity is a legitimate societal goal and (ii) the expertise
scribed by Cambardella and Elliott (1993) and expressed as and time involved in performing this measure makes it an
the percentage of the total soil that was water-stable macro- unattractive indicator for future use.
aggregates �250 	m in diameter. Available water capacity was Productivity was assumed to be the management goal for
estimated by difference in water retention between soils held the Iowa case study. The endpoint measures were yield (Mg
at 1.5 and at 0.01 MPa (15 and 0.1 bar) (Klute, 1986). Bulk ha�1), collected from plots at various landscape positions (e.g.,
density was estimated by a modified core method (Blake and hilltop or shoulder/summit, sideslope or backslope, and toe-
Hartge, 1986), in which soil moisture content, determined by slope) that were adjacent to the soil sampling sites, and sedi-
drying a subsample of the cored soil at 105
C, was used to con- mentation (Mg ha�1), measured as soil material leaving each
vert the total mass of the field-moist soil core to an oven-dry WS in stream water collected at a weir. The endpoint surro-
weight. Electrical conductivity (Rhoades, 1982) of saturated gates, available as WS means, included pesticide application
pastes (U.S. Salinity Laboratory Staff, 1954) was measured rates for atrazine and metalochlor (liters applied), as represen-
using a conductivity meter. Microbial biomass C was measured tatives of potential soil and water contamination.
by fumigation–extraction method (Sparling and Ross, 1993) The management goal for the California case study was
for the NRI, Iowa, and Georgia case studies, and by the chloro- assumed to be productivity. The endpoint measures used net
form-incubation method (Horwath et al., 1996) for the Califor- revenues for each system (treatment means) and net revenues
nia study. Soil pH was determined in 1:1 soil/water for NRI and yield for tomatoes (the main cash crop) (Clark et al.,
and Georgia, 2:1 soil/water in Iowa, and saturated paste in 1999b). The endpoint surrogates used included: water use effi-
California (Thomas, 1996). Potentially mineralizable N was ciency (mm water � crop yield�1); weed cover (%); and the
measured using a 28-d aerobic incubation methods described number of tillage operations per year (treatment means only)
by Drinkwater et al. (1996) (for IA and NRI) or Bundy and (Andrews et al., 2002a), included as an indirect measure of
Meisinger (1994) (for CA). Sodium Adsorption Ratio was soil disturbance.
calculated using results from saturated paste extracts of Na�, The Georgia study’s assumed goal was waste recycling. The
Ca2�, and Mg2� in milliequivalents per liter (U.S. Salinity available endpoint data, from Years 1 and 2, were amount ofLaboratory Staff, 1954). Soil test P was measured via a differ- litter applied (kg dry litter applied ha�1), using a conversionent method for the case studies: for NRI and IA studies,

factor adapted from Safley and Safley (1991) to represent com-the method followed the Mehlich-III extraction procedure
post as an equivalent volume of fresh litter, and fescue yield(Mehlich, 1984); at the California site it was determined by
(kg dried biomass ha�1). Both litter applied and yield wereextracting samples with a 0.5 M sodium bicarbonate solution
available as treatment means only. From Year 3, when soils(Olsen et al., 1954); and the GA study used Mehlich-I double
were sampled, the endpoint surrogates used were soil extract-acid extraction (Kuo, 1996). Extractions were followed by in-
able As and Cu, determined via Mehlich-I double acid extrac-ductively coupled plasma emission (NRI) or colorimetric de-
tion (Amacher, 1996). These metals are common poultry feedtection via molybdate reaction. Total organic C (after removal
fungicidal components and serve as proxies for all metal con-of carbonates with 1 M H2SO4) was determined via dry com-
taminants.bustion of dried ground samples using a gas analyzer (Pella,

1990).
Statistics

Endpoint Measures We used JMP v. 3 software for Windows (SAS Institute,
Cary, NC) for all statistical analyses. We performed analysisOne reason the case studies were selected to demonstrate
of variance (ANOVA) on the observed and the scored MDSthe framework was that their large, existing data sets included
indicators, to compare the statistical differences between treat-either direct endpoint measures or other indirect endpoint sur-
ments in each case study with and without scoring (Step 2).rogates, which reflected the management or societal goals at
We also examined the overall index values in Step 3 by plottingeach site. The available endpoint data varied with each case
and analyzing treatment means and standard deviations usingstudy. Some data were available for each sample point and
ANOVA and Student’s t. Finally, we performed stepwise re-other data were only available as treatment means (noted
gressions of all available indicators (independent variables)below). When only means were available, comparisons were
and endpoints (as iterative dependent variables) for each casemade among treatment means rather than individual sample
study. The p values for acceptance and rejection in the stepwisepoints. These endpoint measures and surrogates served as
models were 0.25 and 0.1, respectively. Examining the inci-proxies for the identified management goals and were used
dence of MDS indicators that were not added to the regressionto validate the efficacy of the MDS and indicator scoring.
models acted as a check of the indicator selection step. WeThe NRI case study included multiple land uses. Therefore,
also examined the efficacy of indicator scoring by comparingwe assumed the management goal to be environmental protec-
the R2 for regressions using scored versus observed data. Thetion. The endpoints were a percentage of C change and a ne-
indicators available for the regressions were limited to thosematode maturity index, which were calculated from the exist-
having scoring curves (see Table 3), to allow the direct compar-ing data. We defined the percentage of change in TOC to be
ison of observed and scored regression results. To make the R2the percentage of difference in observed TOC and mean soil
values comparable among models with different numbers ofsurvey TOC value for each observed soil series, as an indirect
parameters, we report the adjusted coefficients of determina-measure of C sequestration. We calculated the nematode ma-
tion (R2) value, which uses the degrees of freedom in its calcu-turity index based on the method of Bongers (1990). It is a

measure of system disturbance based on the relative abun- lation (SAS Institute, 1995).
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RESULTS AND DISCUSSION scored indicators as independent variables and end-
points (or endpoint surrogates) as iterative dependentBeginning with several concept papers (e.g., Doran
variables for each case study (Table 5) (Results germaneand Parkin, 1994; Larson and Pierce, 1991; Karlen and
to Step 2 are discussed in the next section.). Most ofStott, 1994), quantitative SQ assessments have been re-
the selected MDS indicators were added to the stepwiseported widely in the literature over the past decade (e.g.,
regressions models, with the following exceptions: scoredKarlen et al., 1994, 1996, 1998; Bockstaller et al., 1997;
AGG was not added to the NRI regressions, PMN wasBeare et al., 1999; Hussain et al., 1999; Liebig and Doran,
not part of any of the Iowa stepwise regressions; and1999a, 1999b; Wander and Bollero, 1999; Andrews and
scored Db was not selected for the Georgia regressions.Carroll, 2001; Liebig et al., 2001; Andrews et al., 2002a,
Although these indicators were not part of the MDSs,2002b; Herrick et al., 2002). Andrews et al. (2002a) first
each was suggested for possible MDS inclusion accord-documented the three-step process on which the current
ing to the rules table. The authors chose not to includetool was developed. The tool, SMAF, is called a “frame-
every possible indicator in an effort to keep the MDSs’work” because it is intended to be malleable so that it can
size small.be applied in a variety of climates, soil types, management

The stepwise regressions added indicators in somepractices, and end-user goals.
cases that were not immediately explicable. For instance,Currently, SMAF’s focus is on agricultural land use
test P was not expected to be explanatory of water usebut that, too, is flexible. This tool is concerned with the
efficiency in the California dataset. While the decisionevaluation of change in soil function as a result of man-
rules are quite flexible, it is not possible to capture thisagement, using SQ indicators (that are dynamic or use-
type of spurious relationship in an expert system, nordependent soil properties) interpreted with respect to
would it be advisable to try.taxonomy, climate, land use, and goals. The tool, there-

In a study comparing indexing methods, Andrewsfore, does not address the question of whether the user’s
et al. (2002a) found that both expert opinion- and multi-goals are actually appropriate for a particular site. That
variate statistic-selected MDS indicators performedwould be a land capability question that relates to inher-
equally well in describing the variation in endpoint mea-ent soil properties that do not readily change due to
sures or their surrogates, such as yield, water use effi-management.
ciency, and weed biomass. In the multivariate selectionThe results from the four case studies, presented be-
method, indicator covariance was checked and redun-low, are organized according to the three steps of the
dant indicators eliminated from the MDS. Since thisframework.
added step did not affect the MDS performance, covari-
ance is not considered in the current selection step.Indicator Selection (The covariance of indicators acts as a built-in weighting

Using the decision rules developed for Step 1 of the factor for the related indicators in Step 3, when indicator
SMAF, a set of indicators (MDS) was chosen for each scores are combined.) The decision rules of Step 1 were
case study. Table 2 illustrates the subset of rules applied based on expert opinion of those familiar with each
to generate the case study MDSs. The NRI MDS was indicator and literature review, similar to the Andrews
composed of AGG, MBC, pH, PMN, test P, and TOC, et al. (2002a) study but formalized into an expert sys-
following rules for the environmental protection goal tem format.
in arid systems. The indicators selected for the Iowa In practice, Step 1 would occur before data collection.
MDS were: AGG, BD, MBC, pH, PMN and TOC, ap- Because the case data was pre-existing, indicator selec-
plying rules for a productivity goal, tillage comparisons, tion was constrained by the indicators available in each
and assessments over time. The California MDS indica- data set. Nevertheless, using the assumed management
tors were: EC, pH, SAR, test P, and TOC, using criteria goals and site-specific data for each study resulted in
such as productivity goal, arid region, and organic amend- lists of suggested indicators that included a subset of
ment comparison. For the Georgia study, the selected the available data that could be used for MDSs. We
MDS indicators were: AWC, BD, MBC, pH, test P, and envision this step being useful by itself for choosing
TOC, applying the criteria for manure management. indicators for adaptive management, monitoring, or as-
The selected MDSs consisted of biological, chemical, sessment. Conversely, it could be skipped entirely when
and physical SQ indicators suggested by several authors a minimum data set already exists.
including Larson and Pierce (1991), Doran and Parkin
(1994, 1996), and Seybold et al. (1998). All of these Indicator Interpretation
published SQ minimum data sets include TOC and pH,

After selecting an appropriate MDS for each study,which were selected as indicators for all four studies,
we evaluated the framework’s sensitivity to site-specificbecause of their importance and influence on so many
differences by examining shifts in scoring algorithmscritical soil functions. However, it is the decision rules
(or expected ranges) for each indicator. Plotting theprocess of Step 1 that we are trying to convey, not the
observed and scored values for each indicator illustratedspecific indicators selected. Therefore, these results
how the algorithms responded to changes in controllingshould not be taken as a recommendation for the in-
factors, such as soil type, crop, and climate, within anddicators named.
among the case studies (Fig. 3). The shifting inflectionTo check the efficacy of SMAF Steps 1 and 2, we

performed stepwise regressions using the observed and points and expected ranges were based on the best avail-
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Table 5. Stepwise regression of observed and scored indicator values with endpoint or endpoint surrogates for each case study. Indicators
in italics were added in the regression but not part of the selected MDS.

Observed Scored

Endpoint or surrogate Adjusted R2† Indicators added Adjusted R2 Indicators added

NRI
TOC change, %‡ 0.66 TOC, MBC, P, PMN, AGG 0.54 TOC, test P
Nematode MI§ 0.00 pH 0.00

NRI cropped Xerolls
TOC change, % 0.65 TOC, test P 0.62 TOC, AGG
Nematode MI 0.04 MBC, TOC 0.04 MBC, PMN

NRI Xerolls in no-tilled continuous small grains
TOC change, % 0.62 TOC, MBC 0.62 TOC, P, PMN
Nematode MI 0.10 TOC 0.68 TOC, pH, PMN

IA
Sedimentation, Mg ha�1¶ 0.56 TOC 0.99 TOC, pH
Yield, Mg ha�1 0.52 BD, pH 0.59 BD, test P, AGG
Atrazine (L applied) 0.99 test P, TOC 0.76 MBC
Metalochlor (L applied) 0.44 pH 0.99 TOC, pH

CA
Water use efficiency# 0.29 SAR, EC, test P 0.17 pH, test P, TOC
Weed biomass, %†† 0.73 SAR, TOC, pH 0.55 TOC, pH, test P
Tillage operations‡‡ 0.17 EC, pH 0.38 test P, TOC, pH
Net revenue, US$ ha�1 0.72 TOC, P 0.72 TOC

CA tomatoes
Water use efficiency 0.83 TOC, pH 0.84 TOC
Weed biomass, % 0.88 TOC, SAR 0.89 TOC, SAR
Tillage operations 0.99 TOC, EC 0.97 TOC
Net revenue, US$ ha�1 0.99 TOC, EC 0.89 pH
Yield, Mg ha�1 0.36 P, PMN 0.25 test P

GA
Arsenic, �g kg�1 0.45 pH, test P, AWC 0.41 test P, pH, AWC, MBC
Copper, �g kg�1 0.21 AGG, AWC, test P 0.19 test P, pH, AWC, TOC
Yield, Mg ha�1 0.37 AWC, test P 0.82 pH, test P, AWC, TOC
Litter applied, Mg ha�1 0.55 AWC, BD 0.56 MBC, pH

† Adjusted R2 is the coefficient of determination adjusted by the degrees of freedom in the model to account for differences in the number of variables
in each model and allow comparisons among models (SAS Institute, 1995).

‡ Total organic C (TOC) change is the percentage of difference in observed TOC and mean Soil Survey TOC value for the observed soil series.
§ Nematode MI is the Maturity Index (Bongers, 1990), a measure of system disturbance based on the relative abundance of nematode functional group.
¶Sedimentation is estimated from amount of soil collected at a stream weir draining the watershed or field.
# Water use efficiency as a proportion of water applied and crop yield.
††Percentage of weed cover sampled once per month, averaged over a 9-mo growing season.
‡‡Number of field passes for tillage operations.

able information but can be refined and altered as the (Fig. 4a). Pattern 1 was seen for AGG, MBC, pH, PMN,
and TOC in the NRI study; MBC at the IA study; EC,knowledge base improves. Again, it is the mathematical

framework allowing for site-specific interpretation that test P, and TOC at the California study; and AWC and pH
in the Georgia case studies. This seemed to occur when-we wish to emphasize, not the specific parameters.

Although we attempted to make the framework and ever the majority of observations fell on the ascending
portion of the scoring algorithm, giving a ‘more-is-better’Step 2, in particular, as objective as possible, values and

preferences are inherent in any decision-making process result. The second pattern was when the observed and
scored indicator values had opposite results (e.g., the(Keeney, 1992). Even within basic science, the choice

of what to study is value laden (Kuhn, 1970). Individual highest observed treatment was the lowest after scor-
ing—a ‘less is better’ effect) (Pattern 2) (Fig. 4b). Thisand society goals necessarily play a role in all interpre-

tations and assessments. Specifying assumptions, stating pattern was seen for test P in the NRI study; Db at Iowa;
pH at California; and test P in the Georgia case study.goals, and building on other peer-reviewed science are

the best ways to clarify and to some extent minimize, This opposite scoring pattern was seen when the major-
ity of observations occurred on the descending portionthe unavoidable role of human values.

When examining the results of the site-specific inter- of a curve. Pattern 2 for NRI was driven by the test P
values in woodland, where very high observed test P val-pretation step, four main patterns in treatment differ-

ences emerged when treatment means for the scored and ues resulted in significantly lower scores for test P in this
land use (data not shown). This could be due to P appli-observed indicators were compared using ANOVAs.

These four patterns demonstrated the benefits associ- cations in managed forests or simply due to inherently
high P in relatively undisturbed soils. If the latter, thenated with using scoring based on performance of func-

tion to help interpret indicator data for multiple objectives, the low score is unwarranted and would call for an ad-
justment to the algorithm under this land use. Unfortu-including productivity and environmental protection.

The first and most commonly occurring pattern was nately, the authors did not have enough information
about the NRI management practices to make a deter-characterized by similar results between case study treat-

ments for an observed and scored indicator (Pattern 1) mination. Because the curves were developed primarily
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Fig. 3. Scoring algorithms (multiplied by 10) for all indicators and case studies, illustrating the site-specific shifts in scores. AGG, water-stable
aggregates; Db, bulk density; MBC, microbial biomass C; PMN, potentially mineralizable N; AWC, plant-available water-holding capacity;
EC, electrical conductivity; SAR, sodium adsorption ratio; TOC, total organic C.

for agricultural land uses, we also looked at treatment 1, similar results for observed and scored. (Fig. 4a shows
the Pattern 1 seen for PMN in the NRI subset).differences in a more homogeneous subset of the NRI:

cropped Xerolls. In those two-way ANOVAs, by crop- The third pattern (Pattern 3) was characterized by
observed indicator results that had significant differ-ping practice (continuous small grains vs. wheat-fallow)

and tillage (till v. no-till), all indicators fit under Pattern ences but scored results that had no difference between
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Fig. 4. Examples of observed and scored indicator results, illustrating the four general relationships that occurred: (a) observed and scored
results were equivalent (example is potentially mineralizable N from Natural Resource Inventory [NRI] cropped Xerolls data), (b) observed
and scored results were opposite (example is soil test P from GA data), (c) observed results had significant differences but scored results did
not (example is sodium adsorption ratio [SAR] from California data (org � organic; low � low input; conv 4 � 4-yr conventional rotation;
conv 2 � 2-yr conventional rotation), and (d) observed results showed no significant differences among treatments but scored results were
significantly different (example is soil pH from IA data). Treatments labeled with different letters are significantly different at � � 0.05.
Error bars represent one standard deviation from the mean. WS represents watershed.
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observed indicators were directly compared. The scored
indicators usually had R2s that were similar or greater
than those of the observed indicator values (shown be-
low in parenthesis). For example, indicator-endpoint re-
gressions at the Iowa site had adjusted R2 results of 0.99
(0.56), 0.59 (0.52), and 0.76 (0.99), for sedimentation in
surface water, crop yield, and atrazine applied, respec-
tively. The R2s between indicators and endpoints were
higher when examined for subsets of data, such as one
treatment or one crop, rather than the entire data set.
For instance, when using all NRI data, there was no

Fig. 5. Detailed example of observed and scored indicator results for relationship with nematode diversity. When data for no-
soil pH in 1994 from the IA case study data. WS represents water- tilled Xerolls, cropped to continuous small grains were
shed. examined alone, the adjusted R2 was 0.68. Similarly, all

R2 results increased for the California data set when data
case study treatments (Fig. 4c). Pattern 3 occurred when collected under tomatoes were examined alone. This
most points fell on an asymptote or plateau in the scor- regression test seemed to confirm that the scored indica-
ing algorithm, as was observed for PMN and TOC at tors were capturing intended information about system
Iowa; SAR at California (Fig. 4c); and Db, MBC, and TOC performance. But the need to minimize the amount of
in the Georgia case study. For instance, although there data used in the regression, which reduced spatial ex-
were significant differences among the observed treat- tent, land uses represented and/or environmental differ-
ment means for SAR in the California study (Fig. 4c), ences, to adequately explain the variation in endpoints
none of the observed values was in a range that would probably reflects a need to use different indicators as
be considered detrimental to plant health, water quality, scale increases (Karlen et al., 1997; Bouma, 2002) or land
or soil aggregation. Therefore, all of the treatments re- use changes. This need can easily be filled as indicators,
ceived equally high scores (with no significant differ- selection rules, and scoring algorithms are added to
ence) for SAR on the basis of soil function. Although the framework.
differences among treatments may have statistical signif- While using existing data and surrogate endpoint mea-
icance, functional differences within the observed range sures is a good beginning, an ideal test of SMAF efficacy
are not always a given. The ability to discern this subtlety has yet to be performed. The ideal would be a study ex-
highlights an important strength of the tool. plicitly designed for this purpose that included endpoint

The fourth, least common, and unexpected pattern measures specific to each management goal and soil
(Pattern 4) occurred when the observed results for an function of interest.
MDS indicator showed no significant differences among
treatments but scored results were significantly different Index Integration(Fig. 4d). This was only seen for two indicators, pH and
AGG, at the Iowa study. In a two-way ANOVA, pH at Step 3, integration of indicator scores into an index,

is probably the most controversial. Concerns most oftenIowa was only significant for the scored indicator among
watersheds (Fig. 4d). The AGG scores were significantly expressed are about the use of an index as a regulatory

tool. Yet, in focus groups with farmers, an integrative in-different among years but observed AGG data were
not (data not shown). This unexpected pattern occurred dex was very attractive as a monitoring tool, as long as

they could also access individual indicator informationwhen the observed data had scores in the ascending and
descending portions of a Gaussian curve with few, if from which to make specific management decisions (An-

drews et al., 2003). If desired, however, Steps 1 and 2any, points in the optimum range (e.g., top of the curve),
such as for soil pH in WS2 in 1994 of the Iowa case study could stand alone: one could use the SMAF only to se-

lect the most appropriate indicators to measure or only(Fig. 5). These WS2 pH data resulted in a lower score
compared with the WS3 data, which fell largely in the to interpret existing data. Step 3, on the other hand, re-

lies on the scored indicators from Step 2, because theoptimum range of the curve, even though the means for
observed pH were not significantly different. This sug- indicator measurements must be transformed into unit-

less values before they can be meaningfully combined.gests that important information can be captured by
scoring that might otherwise go undetected when exam- While the first two steps are the most critical, Step 3 al-

lows one to see the overall health of the soil, withoutining observed means alone.
The stepwise regressions were used to examine the the distraction of (potentially) conflicting individual in-

dicator results.ability of the MDSs to explain variation in endpoints
or their surrogates. Table 5 shows regression results (ad- Comparisons of index outcomes using the NRI data

showed that SQ was significantly greater in forage,justed R2s) for scored indicators were 0.54 or greater
for TOC change in the NRI study, 0.59 or greater in range, and woodland soils than for soils under CRP,

continuous grain or wheat-fallow, with the latter beingthe Iowa study, 0.55 or greater for two of four endpoints
in the California study, and �0.41 in three of four end- the lowest (Fig. 6a) for all land uses. Since the CRP

data were grouped together without respect to lengthpoints in the Georgia study. In addition, the regressions
were most informative for Step 2 because scored and of time in CRP, this land use probably included some
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Fig. 6. Soil management assessment framework (SMAF) outcomes for the four case studies including ANOVA and Student’s t results: (a)
Natural Resources Inventory (NRI) data for all land uses and soil types; (b) NRI cropped Xerolls only, grouped by tillage type and cropping
system; (c) Iowa (IA) data grouped by watershed (WS) or tillage type and sampling year; (d) California (CA) data grouped by vegetable
production system (org � organic; low � low input; conv 4 � 4-yr conventional rotation; conv 2 � 2-yr conventional rotation); and (e)
Georgia (GA) data grouped by site (or soil order) and amendment treatment (trt). Treatments or land uses labeled with different letters are
significantly different at � � 0.05. Error bars represent one standard deviation from the mean.

of the most degraded soils along with soils that had a vegetable production in California had significantly higher
SQ index ratings than for the two conventional rotationsrecovery period. This supposition also explains the higher

variance observed for CRP compared with all other land (Fig. 6d). This result using the SMAF is comparable
with that of Andrews et al. (2002a), where scoring curvesuses. When we examined the homogeneous subset of

NRI data, cropped Xerolls, differences between cropping were created specifically for the California data set (as
opposed to using the site-specific factors to shift param-systems were only significant under no-tillage (Fig. 6b).

A similar result was also observed using individual SQ eters in the scoring algorithms). This suggests that the
site-specific scoring of the current framework is workingindicator data for a long-term cropping systems study

in the Northern Great Plains (B. Wienhold, personal as well as individually tailored SQ assessments.
Using data from the Georgia case study, the SMAFcommunication, 2003.)

The Iowa field-scale watershed data showed that long- showed significant differences in SQ index results only
for the Ultisol site (Fig. 6e). None of the MDS indicatorterm use of ridge tillage resulted in a higher index rating

than for the conventionally tilled watershed. The results scores were significantly different among the manage-
ment treatments at the Conasauga site. At the Ultisol site,also showed that both watersheds had significantly

higher index outcomes in 1995 than 1994 (Fig. 6c) even individual scores for pH, AWC, and test P differed among
treatments. The score for pH was significantly greaterthough soil management practices for the 2 yr were es-

sentially the same (Karlen et al., 1999). We attribute for compost compared with the chemical and control.
Scored AWC was higher in compost and litter comparedthe time differences to sample variation, stressing the re-

sponse to management was consistent each year. with chemical. However, it was the soil P score, which
was significantly lower for compost compared with theThe Framework showed that soils used for organic
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other treatments (the converse of observed P—a Pattern in the future by the inclusion of rules for weighting in-
dicators’ scores in some situations. Due to its flexible,2) that drove the index outcome. For this reason, the

compost treatment had a significantly lower index out- database-driven design, many aspects of the SMAF can
be changed and updated simply. In addition, efforts tocome than the other treatments at the Ultisol site.

The ability to assess relative system function, whether improve the user interface have begun. When fully oper-
ational, we expect an advanced version to be even moreas an integrative index or individual indicator scores,

may have strong implications for both natural resources flexible, user-friendly, and useful for relating the effects
of soil management on various soil functions in a broadmanagement and policy. We anticipate that this frame-

work, when fully developed, could have such diverse uses range of settings. We conclude that SMAF is a useful as-
sessment tool that, with further standardization and vali-as: evaluating the effects of bioenergy crop production

(or residue harvest) on soil resources at the field scale; dation, may help move soil conservation and resource
management beyond assessments of soil erosion andassessing management intensities at the farm scale for

Conservation Security Program Enhancement Payments; changes in productivity toward stewardship (Wander
and Drinkwater, 2000), with such diverse applicationsand interpreting watershed scale data (both measured

and modeled) as part of the Conservation Efforts As- as model output interpretation, conservation program
assessment, soil test interpretation, green payments andsessment Program. The framework’s flexibility, leading

to site-specific interpretations, is its biggest strength. conservation credits.
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